Hydrosilylation and hydrogermylation of white phosphorus†
Abstract
The development of efficient, direct strategies for the transformation of white phosphorus (P4) into useful monophosphorus compounds, as alternatives to the current wasteful and hazardous indirect processes, remains a significant challenge. Encouragingly, recent reports have shown that the reduction of P4 with organotin hydrides and subsequent functionalisation with electrophiles allows for the efficient synthesis of an array of industrially relevant monophosphines in a ‘one-pot’ manner. However, despite the practical and conceptual simplicity, the appeal of this method is limited by the inherent toxicity of most organotin derivatives. Here, we address this problem through experimental and computational studies of the reactivity of lighter and less toxic hydrogermane and hydrosilane homologues of organotin hydrides (R3EH, E = Ge or Si) towards P4. These hydroelementation reactions can be employed to directly transform P4 into useful monophosphorus compounds, in a simple ‘one-pot’ fashion similar to the original organotin-based systems.