Defect-rich high-entropy alloy AuCuAgRuNi nanofibers based on d-orbital overlap for biomass value-added conversion†
Abstract
Developing electrocatalysts with high activity and selectivity to promote the oxidation of 5-hydroxymethylfurfural (HMF) holds substantial importance yet presents challenges in the realm of biomass upgrading. Herein, the defect-rich high-entropy alloy AuCuAgRuNi nanofibers (AuCuAgRuNi NFs) were synthesized via a facile one-pot wet chemical synthesis. Remarkably, the AuCuAgRuNi NFs demonstrate exceptional electrocatalytic performance for HMF-to-FDCA conversion under ambient conditions, achieving 97.15% yield and 98.40% selectivity with outstanding stability. Theoretical calculations reveal that defect-induced electronic modulation optimizes reactant adsorption, while d-orbital hybridization among multi-metallic components facilitates electron redistribution, synergistically enhancing catalytic activity. Furthermore, HMF oxidation has been successfully integrated with hydrogen evolution in a flow electrolysis cell, and an energy-efficient coupled system has been established, which holds promise for scalable biomass valorization. This research provides valuable insights into the innovative synthesis and inherent catalytic mechanisms of high-entropy alloy systems.