Nickel-catalysed sequential hydrodefluorination of pyridines: mechanistic insights led to the discovery of bench-stable precatalysts

Abstract

The nickel(0) complex [Ni(iPrPN)(COD)] (iPrPN = 2-[(N-diisopropylphosphino)methylamino]pyridine, COD = 1,5-cyclooctadiene) was an efficient precatalyst for the hydrodefluorination of pyridines employing pinacolborane (HBPin). 2-fluoro and 2,6-difluoropyridines were hydrodefluorinated at the 2- and 6-positions at room temperature in 3 h 30 min. The impact of the number of fluorine atoms and their position at the pyridyl ring in the efficiency of the catalyst was explored. Mechanistic experiments for the hydrodefluorination of 2,6-difluoropyridine allowed to identify COD decoordination followed by C–F oxidative addition as the catalyst entry pathway to the cycle and the [Ni(iPrPN)(COD)] complex as the catalyst resting-state. The Ni(II) fluoride complexes, [NiF(iPrPN)(6-Fpy)] (6-Fpy = 6-fluoropyrid-2-yl) and [NiF(iPrPN)(py)] (py = 2-pyridyl) were independently synthesized and identified as intermediates in the two subsequent hydrodefluorination cycles operative through single-turnover experiments. Both Ni(II) fluoride complexes were found to be bench-stable precatalysts for the process with a comparable efficiency to [Ni(iPrPN)(COD)] in the presence of a substoichiometric amount of COD to prevent catalyst deactivation.

Graphical abstract: Nickel-catalysed sequential hydrodefluorination of pyridines: mechanistic insights led to the discovery of bench-stable precatalysts

Supplementary files

Article information

Article type
Research Article
Submitted
05 Jun 2025
Accepted
17 Jul 2025
First published
17 Jul 2025

Inorg. Chem. Front., 2025, Advance Article

Nickel-catalysed sequential hydrodefluorination of pyridines: mechanistic insights led to the discovery of bench-stable precatalysts

V. Duran Arroyo, R. Nuñez and R. Arevalo, Inorg. Chem. Front., 2025, Advance Article , DOI: 10.1039/D5QI01257K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements