Chiral 0D hybrid lead-bromide perovskites with strong nonlinear chiroptical properties†
Abstract
Chiral optical materials enable simultaneous linear and nonlinear optical properties and have emerged as a new class of materials desirable for applications in chiroptical information technology. Herein, we developed two pairs of hybrid lead-bromide perovskites (R-/S-APD)PbBr4 and (1R,2R-/1S,2S-DACH)2PbBr6·2H2O, and systematically investigated their linear and nonlinear chiroptical responses. Second-harmonic generation circular dichroism (SHG-CD) measurements reveal a high anisotropy factor (gSHG-CD) of up to 1.58 for (1S,2S-DACH)2PbBr6·2H2O, which is the highest value among those of the reported chiral perovskites to date. Notably, these perovskites display a high laser damage threshold (LDT) of up to 59.36 GW cm−2. This study demonstrates that the 0D chiral hybrid lead-bromide perovskite system can simultaneously exhibit both high LDT and gSHG-CD, thereby opening a new route for the design of high-performance chiral nonlinear optics.