Issue 6, 2025, Issue in Progress

Chromogenic hydroxyanthraquinone-based enzyme substrates for the detection of microbial β-d-galactosidase, β-d-glucuronidase and β-d-ribosidase

Abstract

Di-β-D-galactopyranoside derivatives of quinizarin (1,4-dihydroxyanthraquinone) and anthrarufin (1,5-dihydroxyanthraquinone) were evaluated as microbial enzyme substrates in Columbia agar medium for the detection of clinically important microorganisms. Furthermore, these substrates were evaluated both in the presence and absence of iron salts which could chelate to the aglycone after microbial hydrolysis of the substrate. The quinizarin-based substrate resulted in the formation of black microbial colonies in the presence of iron salts and orange colonies in their absence. In contrast, yellow-coloured microbial colonies were observed with the anthrarufin-based substrate regardless of whether iron salts were present or not. 1-Hydroxyanthraquinone-β-D-galactopyranoside also resulted in yellow-coloured microbial colonies in the absence of iron salts and an extended study of this substrate using 38 clinical strains of E. coli indicated its potential for identifying this microorganism when compared to a commercially available indoxyl based substrate. 1-Hydroxyanthraquinone-β-D-glucopyranuronide was also evaluated for E. coli detection, but this substrate was deemed less effective than its indoxyl-based counterpart. 1-Hydroxyanthraquinone-β-D-ribofuranoside was evaluated for its potential to detect Pseudomonas aeruginosa and this substrate shows promise for this application.

Graphical abstract: Chromogenic hydroxyanthraquinone-based enzyme substrates for the detection of microbial β-d-galactosidase, β-d-glucuronidase and β-d-ribosidase

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
05 Sep 2024
Accepted
29 Jan 2025
First published
07 Feb 2025
This article is Open Access
Creative Commons BY license

RSC Adv., 2025,15, 4229-4235

Chromogenic hydroxyanthraquinone-based enzyme substrates for the detection of microbial β-D-galactosidase, β-D-glucuronidase and β-D-ribosidase

M. Burton, A. Garcha, E. C. L. Marrs, J. D. Perry, S. P. Stanforth, G. Turnbull and H. J. Turner, RSC Adv., 2025, 15, 4229 DOI: 10.1039/D4RA06418F

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements