Issue 4, 2025, Issue in Progress

Polyurethane-grafted graphene oxide from repurposed foam mattress waste

Abstract

Polyurethanes (PU) make up a large portion of commodity plastics appearing in applications including insulation, footwear, and memory foam mattresses. Unfortunately, as thermoset polymers, polyurethanes lack a clear path for recycling and repurposing, creating a sustainability issue. Herein, using dynamic depolymerization, we demonstrate a simple one-pot synthesis for preparation of an upcycled polyurethane grafted graphene material (PU–GO). Through this dynamic depolymerization using green conditions, PU–GO nanofillers with tunable PU to GO ratios were synthesized. Chemical analysis revealed that the polyurethane graphenic materials primarily contained the polycarbamate hard-segment of polyurethane while the soft polyol component was removed in washes. PU–GOs were incorporated into bulk polyurethane foam to create composites as a filler at 0.25, 0.5, 1.0, and 2.0 weight percent filler and the thermal and mechanical properties of the resulting foams were analyzed. All PU–GO fillers were shown to improve thermal insulation up to a filler content of 0.5%, with all but 2 of the fillers demonstrating improvements up to 2% of filler content. The greatest decrease in thermal conductivity was 38.5% compared to neat PU foam, observed with the composites containing 0.5% of PU10–GO1 and 1.0% of PU3–GO1. Mechanical performance was tested for each foam and showed that lower polyurethane content graphenic composites produced foams that were less susceptible to fatiguing and more durable over cyclic loading, while higher polyurethane content graphenic composites had mechanical stability similar to neat PU but initially had greater impact resistance. Taken together, these novel PU–GO fillers prepared from repurposed PU mattress show promise as a sustainable additive to improve PU performance.

Graphical abstract: Polyurethane-grafted graphene oxide from repurposed foam mattress waste

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
16 Sep 2024
Accepted
08 Jan 2025
First published
27 Jan 2025
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2025,15, 2737-2748

Polyurethane-grafted graphene oxide from repurposed foam mattress waste

W. M. Vickery, J. Singh, J. D. Orlando, T. Lin, J. Wang and S. A. Sydlik, RSC Adv., 2025, 15, 2737 DOI: 10.1039/D4RA06691J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements