Issue 4, 2025, Issue in Progress

CNT encapsulated nickel-doped hollow porous manganese oxide scaffold as a sulfur cathode host for Li–S battery applications

Abstract

Recently, lithium–sulfur batteries have captivated those in the energy storage industry due to the low cost and high theoretical capacity of the sulfur cathode (1675 mA h g−1). However, to enhance the practical usability of Li–S batteries, it is crucial to address issues such as the insulating nature of sulfur cathodes and the high solubility of lithium polysulfides (LiPS, Li2Sx, 4 ≤ n ≤ 8) that cause poor active sulfur utilization. Designing innovative sulfur hosts can effectively overcome sulfur bottlenecks and achieve stable Li–sulfur batteries. This study presents novel hollow porous structures of Ni-doped MnO2 encapsulated with multi-walled carbon nanotubes (CNTs) used as an efficient host material for a sulfur cathode. These hollow, porous, hierarchical structures, combined with transition metal (Ni) doping, serve to enhance the adsorption of LiPS and contribute to improved redox kinetics during the electrochemical process. Furthermore, the remarkable conductivity provided by the CNT encapsulation significantly enhances the sulfur and LiPS conversion kinetics, effectively suppressing the undesirable shuttling effect and promoting efficient utilization of the active material. The prepared cathode (S@Ni-MO/CNT) not only meets but exceeds expectations, delivering superior cyclability, rate capability results, and improved Li-diffusion properties. These results underscore the effectiveness of constructing novel host materials for sulfur cathodes, leaving no doubt about the potential of this novel host material to address the challenges in lithium–sulfur batteries.

Graphical abstract: CNT encapsulated nickel-doped hollow porous manganese oxide scaffold as a sulfur cathode host for Li–S battery applications

Supplementary files

Article information

Article type
Paper
Submitted
28 Oct 2024
Accepted
03 Jan 2025
First published
27 Jan 2025
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2025,15, 2668-2683

CNT encapsulated nickel-doped hollow porous manganese oxide scaffold as a sulfur cathode host for Li–S battery applications

A. Nulu, V. Nulu, H. C. Kim and K. Y. Sohn, RSC Adv., 2025, 15, 2668 DOI: 10.1039/D4RA07700H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements