Issue 5, 2025

Development of an optode based on 2-amino-4-(4-nitrophenyl)diazenyl pyridine-3-ol and tri-n-octyl phosphine oxide for trace-level lead detection in complex samples

Abstract

A new selective optode has been created for the ultra-sensitive detection of lead ions at trace levels. The membrane is created by incorporating tri-n-octylphosphine oxide (TOPO), 2-amino-4-(4-nitrophenyl)diazenyl pyridine-3-ol (ANPDP), and sodium tetraphenylborate (Na-TPB) into a matrix of plasticized poly(vinyl chloride) (PVC) and o-nitrophenyloctyl ether (o-NPOE). ANPDP serves as a chromophore in this design, while TOPO promotes the formation of a complex between lead ions (Pb2+) and ANPDP, resulting in a cooperative interaction. The composition of the optode was optimized to achieve maximum sensor performance. The sensor exhibits a linear dynamic range from 6.0 to 160 ng mL−1, with quantification and detection limits of 5.9 ng mL−1 and 1.8 ng mL−1, respectively. The membrane demonstrated rapid response times and long-term durability, with no detectable leaching of ANPDP. To ensure accurate total lead determination, Pb4+ ions were reduced to Pb2+ using 6.00 M HCl and freshly prepared 2.50% (w/v) sodium azide. The optode sensor exhibited superior specificity for Pb2+ ions, even when other ions that could potentially interfere were present. It could be effectively regenerated by treatment with 0.1 M ethylenedi-aminetetraacetic acid (EDTA), restoring its functionality for repeated use. The sensor was successfully applied to detect lead in various complex matrices, including biological fluids, environmental water, and food samples, demonstrating its broad applicability and reliability for real-world lead monitoring.

Graphical abstract: Development of an optode based on 2-amino-4-(4-nitrophenyl)diazenyl pyridine-3-ol and tri-n-octyl phosphine oxide for trace-level lead detection in complex samples

Supplementary files

Article information

Article type
Paper
Submitted
17 Dec 2024
Accepted
24 Jan 2025
First published
14 Feb 2025
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2025,15, 3278-3289

Development of an optode based on 2-amino-4-(4-nitrophenyl)diazenyl pyridine-3-ol and tri-n-octyl phosphine oxide for trace-level lead detection in complex samples

A. H. Alluhayb, A. H. Alanazi, A. M. Younis, K. F. Debbabi, R. El-Sayed and A. S. Amin, RSC Adv., 2025, 15, 3278 DOI: 10.1039/D4RA08828J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements