Formation of the E-isomer as an impurity in the optimized flow synthesis of a Z-α-thio-β-chloroacrylamide; E/Z photoisomerization in batch and flow, and solid state characterization of both isomers

Abstract

N-(4-Methylphenyl)-Z-3-chloro-2-(phenylthio)propenamide (Z-3), which is valuable as a reactive substrate for a range of synthetic transformations, can be obtained by a three-step process involving both batch and flow methodologies. Compound Z-3 was isolated as a crystalline material of high purity, however, the E-isomer, E-3, was found to form in solid samples of Z-3 material during storage. Increased ratios of E-3 and pure isolated samples were obtained by photoisomerization in batch and flow modes, with the flow process being optimal in terms of process time. Crystal structure analysis of both the Z and E isomers highlighted key differences in molecular conformations and supramolecular interactions with greater deviation from planarity evident in E-3 relative to Z-3. Analysis of samples of Z-3 by PXRD and DSC after recrystallization from a variety of solvents gave data consistent with the determined crystal structure of Z-3.

Graphical abstract: Formation of the E-isomer as an impurity in the optimized flow synthesis of a Z-α-thio-β-chloroacrylamide; E/Z photoisomerization in batch and flow, and solid state characterization of both isomers

Supplementary files

Article information

Article type
Paper
Submitted
25 Mar 2025
Accepted
07 May 2025
First published
12 May 2025
This article is Open Access
Creative Commons BY license

React. Chem. Eng., 2025, Advance Article

Formation of the E-isomer as an impurity in the optimized flow synthesis of a Z-α-thio-β-chloroacrylamide; E/Z photoisomerization in batch and flow, and solid state characterization of both isomers

O. C. Dennehy, D. Lynch, U. B. R. Khandavilli, S. E. Lawrence, S. G. Collins, A. R. Maguire and H. A. Moynihan, React. Chem. Eng., 2025, Advance Article , DOI: 10.1039/D5RE00137D

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements