Issue 4, 2025

Radiation-induced aerobic oxidation via solvent-derived peroxyl radicals

Abstract

Oxidation is a fundamental transformation in synthesis. Developing facile and effective aerobic oxidation processes under ambient conditions is always in high demand. Benefiting from its high energy and good penetrability, ionizing radiation can readily produce various reactive species to trigger chemical reactions, offering another option for synthesis. Here, we report an ionizing radiation-induced aerobic oxidation strategy to synthesize oxygen-containing compounds. We discovered that molecular oxygen (O2) could be activated by reactive particles generated from solvent radiolysis to produce solvent-derived peroxyl radicals (RsolOO·), which facilitated the selective oxidation of sulfides and phosphorus(III) compounds at room temperature without catalysts. Density functional theory (DFT) calculations further revealed that multiple RsolOO· enable the oxidation reaction through an oxygen atom transfer process. This aerobic oxidation strategy broadens the research scope of radiation-induced chemical transformations while offering an opportunity to convert nuclear energy into chemical energy.

Graphical abstract: Radiation-induced aerobic oxidation via solvent-derived peroxyl radicals

Supplementary files

Article information

Article type
Edge Article
Submitted
19 Aug 2024
Accepted
13 Nov 2024
First published
23 Dec 2024
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2025,16, 1867-1875

Radiation-induced aerobic oxidation via solvent-derived peroxyl radicals

Y. Xu, B. Mu, Z. Tu, W. Liang, J. Li, Z. Sang and Z. Liu, Chem. Sci., 2025, 16, 1867 DOI: 10.1039/D4SC05558F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements