Potential pathways for CO2 utilization in sustainable aviation fuel synthesis
Abstract
The development of sustainable aviation fuels (SAFs) is a must for the decarbonization of the aviation industry. This paper explores various pathways for SAF production, focusing on innovative catalytic processes for the utilization of CO2 as a potential feedstock. Key pathways analyzed include the Modified Fischer–Tropsch Synthesis (MFTS), methanol synthesis, and subsequent transformations of methanol into hydrocarbons (MTH), aromatics (MTA) and olefin oligomerization. The potential of these processes is highlighted, alongside the challenges in catalyst development. The paper emphasizes the need for advanced catalytic processes to achieve high selectivity and stability under industrial conditions, which are critical for the commercial viability of CO2-based SAF production. Ultimately, this work aims to provide a comprehensive overview of the current state of research in SAFs, outlining promising directions for future research.
- This article is part of the themed collection: 2025 Chemical Science Perspective & Review Collection