Issue 4, 2025

Redefining the roles of alkali activators for porous carbon

Abstract

Alkali activation is a common method to prepare commercial porous carbon. In a mixed alkali activation system, the role of each individual alkali has generally been assumed to be the same as in a single alkali activation system, and the low corrosiveness of weak alkalis has mainly been emphasized. However, the intrinsic roles of the individual alkalis should be understood in detail and redefined to illuminate the activation pathways from the perspective of internal chemical reactions rather than corrosiveness. Herein, by combining in situ TG-MS analysis, DFT calculation and other characterizations, the activation processes were precisely tracked, and activation pathways were proposed. In the mixed alkali activation system, the strong alkali KOH served as the activation promoter, first decomposing into K2O, which then attacked the C–C bonds to form active reaction sites defined as pore seeds. The weak alkali K2CO3 acted as the activation pathway modifier; CO32− preferentially etched the pore seeds over K2O due to the lower reaction barrier of CO32− interacting with the pore seeds. Consequently, the rough etching reaction of KOH was replaced and suppressed by the gentler action of CO32−, forming more micropores. When the ratio of strong to weak alkali was 1 : 1, the obtained CK1K2-122 exhibited the highest microporosity (82.61%) and a high specific surface area (1962.18 m2 g−1). It exhibited a high specific capacitance of 296.7 F g−1 and excellent cycling stability with 98.3% retention after 10 000 cycles. The supercapacitor demonstrated a high energy density of 114.4 W h kg−1 at a power density of 17.5 kW kg−1, with a broad potential window of 3.5 V.

Graphical abstract: Redefining the roles of alkali activators for porous carbon

Supplementary files

Article information

Article type
Edge Article
Submitted
21 Oct 2024
Accepted
12 Dec 2024
First published
13 Dec 2024
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2025,16, 2034-2043

Redefining the roles of alkali activators for porous carbon

Y. Zhang, X. Xu, Q. Geng, Q. Li, X. Li, Y. Wang, Z. Tang, B. Gao, X. Zhang, P. K. Chu and K. Huo, Chem. Sci., 2025, 16, 2034 DOI: 10.1039/D4SC07145J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements