Issue 4, 2025

Uncovering ZnS growth behavior and morphology control for high-performance aqueous Zn–S batteries

Abstract

Aqueous Zn–S batteries provide competitive energy density for large-scale energy storage systems. However, the cathode active material exhibits poor electrical conductivity especially at the discharged state of ZnS. Its morphology generated in cells thus directly determines the cathode electrochemical activity. Here, we reveal the ZnS growth behavior and control its morphology by the anion donor number (DN) of zinc salts in electrolytes. The anion DN affects the salt dissociation degree and furthermore sulfide solubility in electrolytes, which finally determines ZnS growth preference on existing nuclei or carbon substrates. As a result, 3D ZnS is realized from the high DN ZnBr2 electrolyte, whereas a 2D passivation film is formed from low DN Zn(TFSI)2. Thanks to the facile electron paths and abundant reaction sites with 3D morphology, the sulfur cathode reaches a high capacity of 1662 mA h g−1 at 0.1 A g−1 and retains 872 mA h g−1 capacity after 400 cycles at 3 A g−1.

Graphical abstract: Uncovering ZnS growth behavior and morphology control for high-performance aqueous Zn–S batteries

Supplementary files

Article information

Article type
Edge Article
Submitted
28 Oct 2024
Accepted
12 Dec 2024
First published
23 Dec 2024
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2025,16, 1802-1808

Uncovering ZnS growth behavior and morphology control for high-performance aqueous Zn–S batteries

S. Wang, W. Wu, Q. Jiang, C. Li, H. Shi, X. Liu and X. Sun, Chem. Sci., 2025, 16, 1802 DOI: 10.1039/D4SC07285E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements