Issue 4, 2025

Controllable reconstruction of lignified biomass with molecular scissors to form carbon frameworks for highly stable Li metal batteries

Abstract

Lithium metal batteries (LMBs) promise high-energy-density storage but face safety issues due to dendrite-induced lithium deposition, irreversible electrolyte consumption, and large volume changes, which hinder their practical applications. To address these issues, tuning lithium deposition by structuring a host for the lithium metal anode has been recognized as an efficient method. Herein, we report a supercritical water molecular scissor-controlled strategy to form a carbon framework derived from biomass wood. Proximate-supercritical water treatment is used to selectively cleave the β-O-4 bonds in lignin, with the extent of degradation controlled by adjusting the treatment environment's acidity. The enhanced thermal power of supercritical water molecules significantly accelerates the etching rate of lignin, increasing the porosity and permeability of the transformed carbon framework. Experimental results and multi-physics simulations show that the interconnected carbon-based pores and inner skeletal multilevel hierarchical structure facilitate rapid electron and ion transfer during battery operation and enhance electrolyte infiltration. Impressively, the as-obtained lithium metal anode exhibits long-term cycling stability for over 2000 hours at 0.5 mA cm−2 with low voltage overpotential. The water-treated Pinus (WTP)-Li//LiCoO2 full cells maintain a high capacity retention rate of 93.3% and a specific capacity of 142 mA h g−1 at 0.5C for 100 cycles.

Graphical abstract: Controllable reconstruction of lignified biomass with molecular scissors to form carbon frameworks for highly stable Li metal batteries

Supplementary files

Article information

Article type
Edge Article
Submitted
31 Oct 2024
Accepted
16 Dec 2024
First published
16 Dec 2024
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2025,16, 1791-1801

Controllable reconstruction of lignified biomass with molecular scissors to form carbon frameworks for highly stable Li metal batteries

Q. Lu, C. Yang, Y. Xu, Z. Jiang, D. Ke, R. Meng, S. Hu, Y. Chen, C. Zhang, J. Yang and T. Zhou, Chem. Sci., 2025, 16, 1791 DOI: 10.1039/D4SC07374F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements