Intramolecular-Locking Modification Enables Efficient Asymmetric Donor-Acceptor-Donor’ Type Ultraviolet Emitters for High-Performance OLEDs with Reduced Efficiency Roll-Off and High Color Purity

Abstract

Developing high-performance ultraviolet organic light-emitting diodes with low efficiency roll-off and high color purity remains challenging due to their inherent wide bandgap characteristics. In this work, we present an intramolecular noncovalent bond locking strategy to modulate donor-acceptor-donor’ (D-A-D’) type ultraviolet fluorophores (mPImCZ2F, mPIoCZ2F and mPImCP2F) with a hot-exciton mechanism. Notably, these asymmetric emitters exhibit significantly enhanced bipolar transport capacity and fluorescence efficiency compared to their counterparts. Among them, mPIoCZ2F exhibits more remarkable the intramolecular locking effect due to multiple C−H···F interactions and ortho-substitution induced steric hindrance, which endows it with a higher radiation rate, narrower emission spectrum, and more balanced charge transport. Consequently, mPIoCZ2F-based non-doped device achieves an electroluminescence (EL) peak at 393 nm with a maximum external quantum efficiency (EQE) of 6.62%. Moreover, in the doped device, mPIoCZ2F emits stable ultraviolet light with an EL peak at 391 nm and a full width at half maximum (FWHM) of 40 nm, corresponding to color coordinates of (0.167, 0.025). It also exhibits an exceptionally high EQE of 8.71% and minimal efficiency roll-off (7.95% at 1000 cd m−2), ranking among the best EL efficiencies reported for UV-OLEDs at high brightness levels.

Supplementary files

Article information

Article type
Edge Article
Submitted
15 Dec 2024
Accepted
25 Feb 2025
First published
26 Feb 2025
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2025, Accepted Manuscript

Intramolecular-Locking Modification Enables Efficient Asymmetric Donor-Acceptor-Donor’ Type Ultraviolet Emitters for High-Performance OLEDs with Reduced Efficiency Roll-Off and High Color Purity

S. Wang, R. Zhang, R. Ding, H. Huang, H. Qi, Y. Liu, S. Ying, D. Ma and S. Yan, Chem. Sci., 2025, Accepted Manuscript , DOI: 10.1039/D4SC08473J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements