Harnessing transient CAAC-stabilized mesitylborylenes for chalcogen activation

Abstract

Newly synthesized adducts of CAAC-bound mesitylborylene with carbon monoxide (CO) and trimethylphosphine (PMe3) are established as efficient precursors for the in situ generation of the dicoordinate borylene [(CAAC)BMes] (CAAC = cyclic(alkyl)(amino)carbene), as demonstrated by their ability to activate elemental chalcogens. Upon thermal or photolytic activation, these precursors readily react with sulfur and selenium, yielding boron chalcogenides characterized by terminal boron-chalcogen double bonds. In contrast, the reaction with tellurium leads to the formation of an unusual diradical ditelluride species with a Te−Te bond. Quantum chemical calculations of its electronic structure indicate an open-shell singlet ground state characterized by significant diradical character. Further investigations into the redox behavior of these boron chalcogenides reveal intriguing transformations, including the redox-induced formation and cleavage of E−E bonds.

Supplementary files

Article information

Article type
Edge Article
Submitted
08 Jan 2025
Accepted
22 Feb 2025
First published
27 Feb 2025
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2025, Accepted Manuscript

Harnessing transient CAAC-stabilized mesitylborylenes for chalcogen activation

M. Michel, L. Endres, F. Fantuzzi, I. Krummenacher and H. Braunschweig, Chem. Sci., 2025, Accepted Manuscript , DOI: 10.1039/D5SC00154D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements