3D printable organic room-temperature phosphorescent materials and printed real-time sensing and display devices

Abstract

Polymer-based host–guest organic room-temperature phosphorescent (RTP) materials are promising candidates for new flexible electronic devices. Nowadays, the insufficient fabrication processes of polymeric RTP materials have hindered the development of these materials. Herein, we propose a strategy to realize 3D printable organic RTP materials and have successfully demonstrated real-time sensing and display devices through a Digital Light Processing (DLP) 3D printing process. We have designed and synthesized the molecules EtCzBP, PhCzBP and PhCzPM with A–D–A structures. The crucial role of strong intramolecular charge transfer (ICT) at the lowest triplet states in achieving bright photo-activated phosphorescence in polymer matrices has also been demonstrated. 3D printable RTP resins were manufactured by doping emissive guest molecules into methyl methacrylate (MMA). Based on these resins, a series of complex 3D structures and smart temperature responsive RTP performances were obtained by DLP 3D printing. Additionally, these RTP 3D structures have been applied in real-time temperature sensing and display panels for the first time. This work not only provides a guiding strategy for the design of emissive guest molecules to realize photo-activated RTP in poly(methyl methacrylate) (PMMA), but also paves the way for the development of 3D-printable real-time sensing structures and new-concept display devices.

Graphical abstract: 3D printable organic room-temperature phosphorescent materials and printed real-time sensing and display devices

Supplementary files

Article information

Article type
Edge Article
Submitted
14 Jan 2025
Accepted
04 Feb 2025
First published
24 Feb 2025
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2025, Advance Article

3D printable organic room-temperature phosphorescent materials and printed real-time sensing and display devices

H. Sun, Y. Xiao, Y. He, X. Wei, J. Zou, Y. Luo, Y. Wu, J. Zhao, V. K. Au and T. Yu, Chem. Sci., 2025, Advance Article , DOI: 10.1039/D5SC00316D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements