Modeling catalytic reaction on ligand-protected metal nanoclusters

Abstract

Monolayer protected metal nanoclusters (MPC) show great potential for catalysis, highlighting the need for unraveling their mechanistic intricacies to enhance catalyst performance. However, due to their inherent complexity, an in-depth understanding of how nanoclusters facilitate chemical transformation has remained elusive. In this work, we employed a combination of classical molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) MD simulations, augmented with the on-the-fly probability-based enhanced sampling (OPES) method, to elucidate substrate binding to the MPC and a chemical reaction on the MPC surface. We investigated the oxidation of amino alcohol to oxazolidine, catalyzed by a peptide ligand functionalized Au25 gold nanocluster, as a prototypical example. Classical MD simulations unveiled the crucial role of solvent and peptide-based ligands in substrate binding, while QM/MM simulations elucidated the mechanistic pathway and provided insight into the free energy landscape of the chemical reaction. This work demonstrates a computational workflow that can be applied to study similar MPC-catalyzed chemical reactions.

Graphical abstract: Modeling catalytic reaction on ligand-protected metal nanoclusters

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Edge Article
Submitted
17 Jan 2025
Accepted
19 May 2025
First published
19 May 2025
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2025, Advance Article

Modeling catalytic reaction on ligand-protected metal nanoclusters

V. Tiwari and T. Karmakar, Chem. Sci., 2025, Advance Article , DOI: 10.1039/D5SC00421G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements