Targeted design of organic Janus particles for improved photocatalytic hydrogen evolution

Abstract

Organic bulk heterojunction particles are decorated in a well-controlled way with metals by using light-assisted bipolar electrodeposition to yield Janus particles. Their asymmetric character leads to significantly enhanced photocatalytic hydrogen evolution reaction. The organic particles are first synthesized via miniemulsion, tuning their size by carefully controlling various preparation parameters. Subsequently, the synergistic effect of an electric field and light is explored for the site-selective bipolar electrochemical deposition of different metals (Pt, Au or Pd). Photocatalytic tests reveal that in the case of platinum, the resulting Janus particles significantly outperform particles randomly covered with metal, as well as unmodified particles, showing an increase in hydrogen evolution efficiency by up to 500%. This superior performance is attributed to an enhanced charge carrier separation in the Janus structure, where Pt, confined at one side, facilitates more efficient electron shuttling and transfer. This work constitutes the first study reporting a promising approach for designing novel metal–organic Janus particles to boost photocatalytic hydrogen evolution and opens up new perspectives for optimizing the design of various other hybrid systems for sustainable energy conversion.

Graphical abstract: Targeted design of organic Janus particles for improved photocatalytic hydrogen evolution

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Edge Article
Submitted
30 Jan 2025
Accepted
28 Apr 2025
First published
30 Apr 2025
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2025, Advance Article

Targeted design of organic Janus particles for improved photocatalytic hydrogen evolution

K. Missaoui, G. Wantz, T. Toupance, S. Chambon and A. Kuhn, Chem. Sci., 2025, Advance Article , DOI: 10.1039/D5SC00802F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements