Polymorphism and phase transformation tuned luminescence and mechanistic insights in nonconventional luminophores

Abstract

Nonconventional luminophores (NCLs) are attracting significant attention for their unique properties and applications. However, the lack of a comprehensive mechanistic understanding impedes their further development. Particularly, a recurring assumption that impurities are responsible for the luminescence has hindered progress. To elucidate the emission mechanism, we report tunable intrinsic emission from highly purified gemini aliphatic quaternary ammonium salts (GAQASs), leveraging their polymorphism. We demonstrate that polymorphism-dependent luminescence arises from distinct molecular packings and consequent varied clustering states. Specifically, denser ion clustering enhances charge transfer and recombination, heavy atom effects and conformational rigidity, thereby accelerating radiative triplet decay and intersystem crossing, while suppressing nonradiative triplet decay, ultimately leading to enhanced phosphorescence. Furthermore, GAQAS crystals undergo irreversible phase transformations upon heating, which partially disrupt intermolecular interactions, thus allowing for tunable emission. This polymorphism and phase transformation regulated luminescence in GAQASs strongly suggests that intrinsic factors, rather than impurities, are responsible for the observed emission, and are consistent with the clustering-triggered emission mechanism. Our findings establish a direct link between molecular packing, electronic structure and luminescent properties in NCLs. This study advances the mechanistic understanding of NCL luminescence, demonstrating an effective strategy for tunable emission via polymorphism and phase transformation.

Graphical abstract: Polymorphism and phase transformation tuned luminescence and mechanistic insights in nonconventional luminophores

Supplementary files

Article information

Article type
Edge Article
Submitted
24 Mar 2025
Accepted
19 May 2025
First published
20 May 2025
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2025, Advance Article

Polymorphism and phase transformation tuned luminescence and mechanistic insights in nonconventional luminophores

A. Li, Z. Zhao, G. Yang, Q. Zhang, X. Chen and W. Z. Yuan, Chem. Sci., 2025, Advance Article , DOI: 10.1039/D5SC02250A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements