Tuning the Surface Chemistry of NHC–Protected Au13 Nanoclusters Via a Robust Amide Coupling Procedure

Abstract

There is significant potential use for gold nanoclusters in biomedicine owing to their favorable biological and optical properties. To access this potential, there is a need for methods to alter the ligand scaffold of gold nanoclusters to tune their biological properties. Surface modifications to the ligands must occur with molecular precision to generate monodisperse products for the accurate determination of structure activity relationships and eventual translation to clinical practice. Herein, we describe methods for molecularly precise surface modifications to Au13 nanoclusters via amide couplings to -COOH functionalities and their stability to conditions necessary for the removal of protecting groups used in amide coupling chemistry. These clusters were found to be highly stable to basic conditions for the removal of base-labile -Fmoc and -OMe groups but less stable to acidic conditions for the removal of acid-labile -Boc and -OtBu groups. The ligand shell and Au13 core of such clusters were found to be preserved following modifications to the ligand shell allowing the solubility and biological properties of the cluster to be altered independently of their optical properties. The nature of the protecting ligand was found be instrumental for cluster stability to enable the use of the harsh conditions necessary to yield monodisperse products.

Supplementary files

Article information

Article type
Edge Article
Submitted
22 Apr 2025
Accepted
31 Jul 2025
First published
31 Jul 2025
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2025, Accepted Manuscript

Tuning the Surface Chemistry of NHC–Protected Au13 Nanoclusters Via a Robust Amide Coupling Procedure

A. L. Laluk, D. A. Buschmann, S. Takano, A. I. Sullivan, P. Aminfar, K. Stamplecoskie, T. Tsukuda and C. Crudden, Chem. Sci., 2025, Accepted Manuscript , DOI: 10.1039/D5SC02951A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements