Zinc substituted carbenes: synthesis, structure, and ambiphilic reactivity

Abstract

Metal-substituted carbenes are fundamentally important as they represent the limiting configurations of metal carbynes. However, structurally characterized examples are still rare, and their reactivity remains underexplored. Herein, we report the first synthesis, characterization, and reactivity studies of zinc-substituted carbenes. UV irradiation of zinc diazoalkyl complexes LZnC(N2)P [L = [(ArNCMe)2CH], P = (DippNCH2)2P, Ar = Dipp or Mes, Dipp = 2,6-iPr2C6H3, Mes = 2,4,6-Me3C6H2] generates Zn(II)-substituted carbenes LZnCP with concomitant N2 release. The Zn–C–P moiety features nearly linear carbene centers, deviating from conventional carbene geometry. Computational studies indicate a singlet ground state stabilized through synergistic effects of C–P π-interaction and carbene lone-pair delocalization towards the Zn center. Treatment of LZnCP with CO2 selectively affords zincated ketene via nucleophilic attack and tandem C[double bond, length as m-dash]O double bond cleavage. It reacts with 4-dimethylaminopyridine to form a carbene-Lewis base adduct exhibiting electrophilic reactivity. Furthermore, zinc-substituted carbenes enable direct transition metals coordination to give the heterobimetallic Zn/M (M = Ag+, Au+, Ni) μ-carbyne complexes.

Graphical abstract: Zinc substituted carbenes: synthesis, structure, and ambiphilic reactivity

Supplementary files

Article information

Article type
Edge Article
Submitted
08 May 2025
Accepted
22 Jul 2025
First published
23 Jul 2025
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2025, Advance Article

Zinc substituted carbenes: synthesis, structure, and ambiphilic reactivity

S. Jiang, G. Wang, Y. Cai, L. Maron and X. Xu, Chem. Sci., 2025, Advance Article , DOI: 10.1039/D5SC03342J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements