Biocompatible luminescent Ce3+-sensitized SrF2:Tb3+ for anticounterfeiting and forensic fingerprint detection
Abstract
Ce3+-sensitized Tb3+-activated SrF2 nanophosphors (NPs) were synthesized using the hydrothermal method. Crystallographic characterization using X-ray diffraction confirms the formation of cubic SrF2 with space group Fmm for all samples. The FESEM image indicates spherical-shaped particles. Surface functionalization renders that the NPs are dispersible in water. The strong green emission of SrF2:5% Tb3+, 5% Ce3+ at 541 nm increases by 50-fold than that of SrF2:5% Tb3+. The resonance energy transfer between Ce3+ and Tb3+via multipolar interactions is observed. The energy transfer efficiency and spectral overlap integral are calculated. The absolute quantum yield of SrF2:5% Tb3+, 5% Ce3+ is observed to be ∼12%. The NPs show excellent biocompatibility towards the HeLa cell line with 70% cell viability. Intercellular uptake of the SrF2:5% Tb3+, 5% Ce3+ nanophosphor is fair, and its potential for anti-counterfeiting and forensic fingerprint applications is observed.