Graphene nanoplatelet–nickel ferrite coated textile-based embroidered capacitive pressure sensor for wearable electronics application†
Abstract
In recent times, pressure sensors developed from e-textiles have gained tremendous attention due to their flexibility, comfort, real-time detection, and potential for long-term applications when integrated with monitoring devices. The current research focuses on designing a capacitive pressure sensor comprising a porous textile substrate for electrodes and a porous textile-based dielectric layer. A solution processing approach was used to formulate a graphene nanoplatelet/nickel ferrite (GNP–NiFe2O4) composite, and the dip-coating technique was utilized to coat the sensing layer on pure cotton and cotton–polyester fabric. The coated fabric was integrated as a dielectric layer above the interdigitated capacitor to observe the capacitance variation under applied pressure. Additionally, the effects of the volume percentage of GNPs in GNP–NiFe2O4 and the fabric type on the sensor performance were also considered. The highest sensitivity was obtained for the cotton/polyester textile coated with 10 wt% GNP–NiFe2O4. The proposed pressure sensor can reach the linear band in the range from 11 kPa to 100 kPa, making it suitable for pressure sensing in cases of physical impact. Furthermore, a large-area, wireless array of six pressure sensors has been fabricated from the optimized dielectric textile coated with GNP–NiFe2O4. The change in the pressure range due to multiple sensors can be monitored on a smartphone, enabling real-time applications in monitoring human body motion, human tactile sensing, or any external pressure in cases of gait or grip.