Ammonia synthesis from water and nitrogen using electricity with a hydrogen-permeable membrane electrochemical cell with Ru catalysts and molten hydroxide electrolyte: integration with ammonia separation and unreacted gas recirculation†
Abstract
There is considerable interest in synthesizing NH3 directly from abundant H2O and N2 using electricity from renewable energy sources, for applications such as synthetic fuels, artificial fertilizers, and raw materials for plastics. NH3 synthesis from N2 and H2O was investigated using an electrochemical setup featuring Ru/Cs+/C catalysts, Pd alloy membrane cathodes, NaOH–KOH molten electrolytes, and Ni anodes operated at 250 °C and 1.0 MPa (absolute). This electrochemical setup was integrated with a refrigerated gas/liquid separator at −75 °C to concentrate NH3 and a recirculation pump for unreacted H2 and N2. As a single-pass reactor, if NH3 separation and unreacted gas recirculation were not used, this electrochemical device produced NH3 at 1.0 MPa and 250 °C, with an apparent current efficiency of 32–20% at 10–100 mA cm−2. This efficiency was limited by the chemical equilibrium, which is calculated to be 36%. The study achieved a 90% apparent current efficiency, with a 320 nmol s−1 cm−2 production rate of NH3 at 100 mA cm−2, 250 °C, and 1.0 MPa with NH3 separation and unreacted gas recirculation. The remaining 10% of the apparent current efficiency was used for H2 production. The reaction kinetic properties and scalability of the present system were discussed.
- This article is part of the themed collection: Recent Open Access Articles