Evaluating the industrial potential of emerging biomass pretreatment technologies in bioethanol production and lipid recovery from transgenic sugarcane

Abstract

The selection of pretreatment methods is critical to achieving high product yields during bioconversion of lignocellulosic biomass. Hydrothermal, soaking-in-aqueous ammonia, and ionic liquid pretreatment methods are viable candidates for minimizing sugar decomposition, permitting the effective hydrolysis of structural carbohydrates, and producing a fermentable substrate suitable for achieving industrial ethanol titers and yields. In this study, the effect of these three pretreatment methods on non-modified sugarcane cultivar CP88-1762 and two transgenic lipid-accumulating sugarcane lines, oilcane 1565 and oilcane 1566, were investigated and compared in terms of lipid recovery, sugar yield, and ethanol yields within the lignocellulosic biomass conversion pipeline. Fed-batch enzymatic hydrolysis at high solid loading yielded hydrolysates capable of supporting industrial bioethanol titers across all conditions. The highest sugar yields were obtained on ammonia-pretreated biomass hydrolysate (253.73 g L−1), followed by hydrothermally pretreated hydrolysate (213.10 g L−1) and ionic liquid-pretreated hydrolysate (154.20 g L−1). Commercially viable ethanol titers of 100.62 g L−1, 64.47 g L−1, and 52.95 g L−1 were achieved from ammonia, hydrothermal, and ionic liquid pretreated hydrolysate with the corresponding ethanol productivities of 2.08 g L−1 h−1, 0.53 g L−1 h−1, and 0.36 g L−1 h−1. The lower acetic acid concentration in ammonia-pretreated hydrolysate may have enhanced its fermentability relative to the hydrothermal pretreatment condition, as indicated by the differences in ethanol titer and productivity. Lower sugar yields and ethanol productivities under the ionic liquid conditions likely resulted from the inhibitory effect of cholinium lysinate. Oilcane 1565 and oilcane 1566 bagasse accumulated over 16- and 3 times higher lipids than the non-modified sugarcane CP88-1762. The total fatty acid content in the oilcane samples was reduced in ammonia and ionic liquid-pretreated bagasse relative to the hydrothermal pretreatment condition. While all pretreatment techniques tested are industrially viable, the observed differences in titer, productivity, and lipid content indicate that careful selection and validation of upstream processing methods can contribute to improved economic and environmental outcomes.

Graphical abstract: Evaluating the industrial potential of emerging biomass pretreatment technologies in bioethanol production and lipid recovery from transgenic sugarcane

Supplementary files

Article information

Article type
Paper
Submitted
13 Apr 2025
Accepted
09 Jul 2025
First published
23 Jul 2025
This article is Open Access
Creative Commons BY-NC license

Sustainable Energy Fuels, 2025, Advance Article

Evaluating the industrial potential of emerging biomass pretreatment technologies in bioethanol production and lipid recovery from transgenic sugarcane

N. N. Deshavath, M. D. Nenavath, W. Woodruff, B. Kannan, H. Liu, V. R. Pidatala, P. Wolski, D. Xie, K. Taylor, Y. Zhang, T. K. Sato, A. Rodriguez, J. Shanklin, F. Altpeter and V. Singh, Sustainable Energy Fuels, 2025, Advance Article , DOI: 10.1039/D5SE00519A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements