Issue 22, 2025

Protein monolayer formation: the combined role of the surface features and protein–protein interactions

Abstract

The study of protein adsorption at solid–liquid interfaces is a widely investigated research field because of its crucial relevance in biomaterial applications. In this article we provide detailed characterization of the interaction between two proteins, lysozyme and human serum albumin, characterized by different charge and structures, with two surfaces, gold or poly(methyl methacrylate), which differ in hydrophobicity and polarizability. The adsorption process has been performed by implementing experimental quartz crystal microbalance with dissipation monitoring and atomic force microscopy results with tuned molecular dynamics simulations. In this article, in fact, molecular dynamic simulations have been performed by considering several proteins in random orientations, approaching the surface from the solution. In this way, during the approaching process, not only protein interaction with the surface but also solvent molecules and the other proteins have been taken into account. Furthermore, to adequately simulate the surfaces, with regard to the gold surface, surface polarization and chemisorption have been taken into account, while a suitable new model has been proposed to describe the poly(methyl methacrylate) surface. The data obtained enable us to explain that the preferred interaction of the negatively charged human serum albumin protein with the gold surface (negatively charged) is mainly driven by chemisorption and polarizability, while the positively charged lysozyme preferentially adsorbs on poly(methyl methacrylate) because of both electrostatic and hydrophobic interactions. Interestingly, using this information, we have elucidated the challenging experimental results concerning the displacement of the two proteins on nanostructured surfaces made up of nanowell arrays.

Graphical abstract: Protein monolayer formation: the combined role of the surface features and protein–protein interactions

Supplementary files

Article information

Article type
Paper
Submitted
30 Jul 2024
Accepted
25 Apr 2025
First published
29 Apr 2025

Soft Matter, 2025,21, 4442-4454

Protein monolayer formation: the combined role of the surface features and protein–protein interactions

P. Campione, G. M. Messina, M. Giannetti, C. Mazzuca and A. Palleschi, Soft Matter, 2025, 21, 4442 DOI: 10.1039/D4SM00912F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements