Issue 3, 2025

Optimizing the charge transport in redox-active gels: a computational study

Abstract

Redox-active polymer gels are promising materials for various applications, such as energy conversion and storage systems, organic electronics, soft-robotics, sensors and others. This is in part due to the remarkable structural tunability of these materials. The gel may adopt different conformations depending on the crosslinking density, solvent temperature and other conditions. These parameters affect its behavior, including the dynamics of the charge transport between the redox groups grafted to the polymer subchains, which is of utmost importance for electrochemical applications. Here, we employed coarse-grained molecular dynamics simulation to investigate the impact of crosslinking, redox group content and solvent quality on both subchain mobility and charge transport speed. In particular, unexpected behavior of the system under the theta-solvent condition was found and analyzed. The obtained results provide useful guidelines to facilitate the best conditions for enhanced “redox induced” conductivity in polymer gels, which would help the development of redox-flow batteries and other electrochemical devices.

Graphical abstract: Optimizing the charge transport in redox-active gels: a computational study

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
12 Oct 2024
Accepted
09 Dec 2024
First published
10 Dec 2024

Soft Matter, 2025,21, 411-417

Optimizing the charge transport in redox-active gels: a computational study

A. V. Sergeev, V. Yu. Rudyak, R. A. Samodelkin, E. Yu. Kozhunova and A. V. Chertovich, Soft Matter, 2025, 21, 411 DOI: 10.1039/D4SM01199F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements