Issue 6, 2025

The shape of cleaved tethered membranes

Abstract

A remarkable property of flexible self-avoiding elastic surfaces (membranes) is that they remain flat at all temperatures, even in the absence of a bending rigidity or in the presence of active fluctuations. Here, we report numerical results of these surfaces wherein we alter their topology by systematically cleaving internal bonds. While it is known that a random removal of membrane bonds does not disrupt the overall extended shape of the membrane, we find that cleaving an elastic surface with longitudinal parallel cuts leads to its systematic collapse into a number of complex morphologies that can be controlled by altering the number and length of the inserted cuts. For the simpler case of membranes with bending rigidity but in the absence of self-avoidance, we find that the radius of gyration of the surface as a function of number of cuts is represented by a universal master curve when the variables are appropriately rescaled.

Graphical abstract: The shape of cleaved tethered membranes

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
17 Oct 2024
Accepted
04 Jan 2025
First published
06 Jan 2025
This article is Open Access
Creative Commons BY-NC license

Soft Matter, 2025,21, 1134-1140

The shape of cleaved tethered membranes

A. D. Chen, M. C. Gandikota and A. Cacciuto, Soft Matter, 2025, 21, 1134 DOI: 10.1039/D4SM01225A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements