A novel microscopic origin of co-nonsolvency†
Abstract
Co-nonsolvency presents a fundamental paradox in polymer physics where macromolecules undergo collapse or precipitation in mixed good solvents. Through investigations combining simulations of various binary good solvent systems of polymers, including single-chain and multi-chain of homopolymers and block copolymers, and ternary Flory–Huggins theoretical validation, we reveal that the competition between the enthalpy of the system and the mixing entropy of binary solvents results in the liquid–liquid phase separation (LLPS) of the better solvent (S-solvent) and the co-nonsolvency phenomenon. To reduce the enthalpy, the polymer and S-solvent tend to mix together to maximize their contact, which, however, is entropically unfavorable due to the localization of the S-solvent in the polymer domain. The LLPS of the S-solvent, where different chain segments share the localized S-solvent molecules, simultaneously lowers the enthalpy and reduces the loss of the mixing entropy. This sharing leads the chain in single-chain systems to be in a locally folding conformation with a size being much smaller than that of the ideal chain. In multi-chain systems, however, the sharing can be among segments from different chains, which causes chain condensation and hence an average chain size larger than its ideal value. Our study provides a novel mechanism for co-nonsolvency and may provide insights into the LLPS in other soft matter systems.
- This article is part of the themed collection: Soft Matter 20th Anniversary Collection