Blockage effects in the chemotaxis of diffusiophoretic particles

Abstract

Transport mechanisms at the micro- and nano-scale play an essential role in regulating intracellular organization. Recent work indicates that directed motion of constituents inside cells can emerge through diffusiophoretic transport, in which colloidal particles move under the influence of chemical gradients. Here, we examine how blockers—passive or actively consuming—reshape those gradients and thereby influence the motion of diffusiophoretic particles. By combining analytical solutions with finite element simulations, we first show that a single blocker can distort a background gradient enough to create or eliminate stagnation points, significantly modifying particle transport. We then introduce a second, explicitly sized blocker at one of these stagnation points and measure how its finite radius alters the diffusiophoretic velocity field for a test particle. Even moderate changes in the second blockers size can cause noticeable shifts in the substrate distribution, highlighting the importance of accounting for explicit particle radii under crowded or consumption-driven conditions. Our findings underscore that subtle geometric variations—such as the radii and positions of two or more blockers—can profoundly affect diffusiophoretic motion, providing a more complete picture of how blocking and crowding phenomena shape intracellular transport.

Graphical abstract: Blockage effects in the chemotaxis of diffusiophoretic particles

Article information

Article type
Paper
Submitted
13 Mar 2025
Accepted
09 May 2025
First published
09 May 2025
This article is Open Access
Creative Commons BY-NC license

Soft Matter, 2025, Advance Article

Blockage effects in the chemotaxis of diffusiophoretic particles

Z. Song, M. Farnese, A. Shresth and M. Olvera de la Cruz, Soft Matter, 2025, Advance Article , DOI: 10.1039/D5SM00270B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements