Issue 2, 2025

Cold plasma activated CO2 desorption from calcium carbonate for carbon capture

Abstract

This work investigates the non-equilibrium regeneration of one scalable sorbent material for carbon capture, calcium oxide, in a customized flow reactor coupled to a low-temperature atmospheric-pressure plasma source. The results show that such a plasma is capable of desorbing CO2 from CaCO3, with an operating temperature far below the thermal decomposition temperature of carbonate. The desorbed CO2 is further converted to CO in situ. The energy cost is 1.90 × 103 kWh per tCO2, as the same order of magnitude as the state-of-the-art high temperature regeneration technology. A non-equilibrium kinetic mechanism is proposed in which CO2 desorption is coupled into air plasma chemistry. Electron-impact reactions in air lead to the generation of vibrationally excited nitrogen and ozone. Subsequent quenching of atomic oxygen on the carbonate surface can regenerate CaO, while NOx will pollute the surface. Compared with the previous methods used in sorbent regeneration, plasma-based technologies offer an electrified, sustainable, and low-temperature solution based on the non-equilibrium plasma chemistry. Possible scaling strategies include fluidization, flow pulsation, and plasma catalysis. This work demonstrates the feasibility of non-equilibrium plasma processing of the sorbent material for cyclic capture and regeneration in atmospheric air using thermally low-intensity processes.

Graphical abstract: Cold plasma activated CO2 desorption from calcium carbonate for carbon capture

Supplementary files

Article information

Article type
Paper
Submitted
18 Aug 2024
Accepted
06 Jan 2025
First published
15 Jan 2025
This article is Open Access
Creative Commons BY-NC license

RSC Sustainability, 2025,3, 973-982

Cold plasma activated CO2 desorption from calcium carbonate for carbon capture

H. Zhong, D. Piriaei, G. Liccardo, J. Kang, B. Wang, M. Cargnello and M. A. Cappelli, RSC Sustainability, 2025, 3, 973 DOI: 10.1039/D4SU00491D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements