Vortex Fluidic-Mediated Transesterification Enhancement of Mongongo Fatty Acid Ethyl Ester Production for Haircare Applications

Abstract

Fatty acid ethyl esters (FAEE) are one of the most popular ingredients in the organic cosmetic market due to their versatile functionality. However, its production technique aligning with the principle of green chemistry and adhering to organic standards remains unexplored. This study investigated the use of the vortex fluidic device (VFD), a versatile thin-film processing device that can generate substantial mechanical energy within a rapidly rotating tube, to assist in the sustainable and efficient production of Mongongo FAEE. Using the VFD, a FAEE yield of 92.65% was achieved within 20 minutes of processing, 1.3 times more effective than that attained via bench-top methods. Proton nuclear magnetic resonance (1H NMR) and gas chromatography-mass spectrometry (GC-MS) confirmed the preservation and elevated concentrations of polyunsaturated FAEE following VFD processing. Furthermore, Mongongo FAEE was investigated for its application in hair protection. In a custom hair styling simulation experiment, a comparative analysis of Mongongo oil with FAEE demonstrated that Mongongo FAEE exhibited superior coverage efficiency on the hair surface, masking 95% of sulphur and nitrogen from the hair surface. This results in reduction in pore size, improved surface integrity, enhanced gloss, and minimised cysteine oxidation of hair. In the sun protection test, the FAEE-treated hair demonstrates a uniform morphology after 8 hours of sunlight exposure. Overall, it has been shown that a high yield of Mongongo FAEE was effectively achieved via VFD processing, while also demonstrating the ability to use the product in haircare applications.

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
04 Dec 2024
Accepted
24 Feb 2025
First published
26 Feb 2025
This article is Open Access
Creative Commons BY-NC license

RSC Sustain., 2025, Accepted Manuscript

Vortex Fluidic-Mediated Transesterification Enhancement of Mongongo Fatty Acid Ethyl Ester Production for Haircare Applications

X. Cao, X. Luo, S. M. Barros, W. Xing, M. MacGregor-Ramiasa, I. Delcheva, J. Campbell, S. He, B. P. Kirk, Y. Tang and C. L. Raston, RSC Sustain., 2025, Accepted Manuscript , DOI: 10.1039/D4SU00763H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements