Challenges and strategies for probing the composite interface of PEM electrolyzers and fuel cells using operando AP-XPS†
Abstract
Understanding the surface chemistry of electrocatalyst systems under operando conditions is central to revealing the electrocatalytic cell's working mechanisms. Determination of these catalytic processes on a molecular scale and the involved components is fundamental to streamlining material design for energy conversion and storage applications. X-ray photoelectron spectroscopy (XPS) is an established technique used to study the chemical and electronic states of materials. While the surface sensitivity of XPS is typically high, use of tender X-ray energies and technical advancements have allowed for the direct probing of solid–vapor and solid–liquid interfaces. However, protocols and documentation of experimental considerations for operando XPS probing of working electrolyzers and fuel cells remain scarce. Herein, we report an approach for the study of working polymer electrolyte membrane (PEM) electrolysis cells using ambient pressure X-ray photoelectron spectroscopy (AP-XPS). This approach directly probes the composite electrode surface on the membrane electrode assembly (MEA) in 100% relative humidity to establish a meaningful liquid layer for electrocatalysis. We carry out a systematic investigation from the cell constituent components to a fully assembled working operando electrolytic system and establish a method for AP-XPS study of the complex composite MEA, providing recommendations for data acquisition and component analysis.
- This article is part of the themed collection: Celebrating 10 years of Emerging Investigators in Journal of Materials Chemistry A