Iron-Based Polyanionic Cathodes for Sustainable Sodium-Ion Batteries

Abstract

Sodium-ion batteries (SIBs) have emerged as a compelling alternative to lithium-ion batteries, driven by the abundance of raw materials and lower costs. Iron-based polyanionic compounds, particularly Na2+xFe1+x(PO4)xP2O7 (NFPP), stand out as promising cathode materials due to their structural stability, high operating voltage, and superior cycling performance. This review offers a comprehensive overview of recent advances in NFPP cathodes, addressing their crystal structure, electrochemical mechanisms, synthesis techniques, and performance-enhancing modifications. Key challenges—including low electronic conductivity, impurity phase formation, and constrained energy density—are critically examined. To mitigate these issues, strategic approaches such as phase optimization, carbon coating, doping, and heterostructure design are systematically evaluated for their efficacy in improving conductivity, stability, and energy output. Furthermore, the barriers to scaling NFPP production, such as synthesis scalability and cost-efficient processing, are discussed in the context of commercialization. Finally, future research priorities are proposed, emphasizing advanced nanostructure, novel doping elements, and sustainable synthesis routes to accelerate the development of high-performance NFPP cathodes. These efforts aim to pave the way for practical, economically viable, and environmentally sustainable SIB technologies.

Article information

Article type
Review Article
Submitted
11 Feb 2025
Accepted
06 Apr 2025
First published
08 Apr 2025

J. Mater. Chem. A, 2025, Accepted Manuscript

Iron-Based Polyanionic Cathodes for Sustainable Sodium-Ion Batteries

L. Li, J. Meng, X. Kong, P. Lin, Q. Rong, X. Jiao, Z. Song, Y. Liu and S. Ding, J. Mater. Chem. A, 2025, Accepted Manuscript , DOI: 10.1039/D5TA01112D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements