Demystifying charge-compensation mechanisms and Oxygen dimerization in Li-rich Li2NiO3 cathodes

Abstract

Li-rich cathodes are gaining popularity for Li-ion batteries due to their higher capacity compared to standard layered cathodes. However, the redox mechanisms in these materials are still not clear, nor is the origin of the extra capacity observed experimentally. We investigate the elusive charge-compensation mechanisms and their impact on potential oxygen-dimer formation in a recently synthesised Li-rich cathode, Li2NiO3. Using state-of-the-art ab initio dynamical mean-field theory, we show that the excess capacity in Li2NiO3 comes from a combined Ni and O redox, unlike its layered counterpart LiNiO2, where O redox predominates. Moreover, we demonstrate O dimer formation via a plot of the electron localisation function for the first time, and attribute this formation to the higher oxidation state of O, even in the pristine material. Finally, we show that Li migration to the interlayer tetrahedral sites at the end of charge is potentially unlikely due to the end configuration being higher in energy and the stabilisation of the parent structure caused by O dimerization. This microscopic understanding leads to better design of Li-rich high Ni-content cathodes with higher capacity and minimal degradation.

Supplementary files

Article information

Article type
Paper
Submitted
12 May 2025
Accepted
02 Jul 2025
First published
08 Jul 2025
This article is Open Access
Creative Commons BY-NC license

J. Mater. Chem. A, 2025, Accepted Manuscript

Demystifying charge-compensation mechanisms and Oxygen dimerization in Li-rich Li2NiO3 cathodes

H. Banerjee, C. P. Grey and A. J. Morris, J. Mater. Chem. A, 2025, Accepted Manuscript , DOI: 10.1039/D5TA03794H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements