Forged by Charge: Polaron-Induced Matrix Formation in Silicon Nitride Conversion-Type Anodes for Lithium-ion Batteries
Abstract
The quest for high-capacity anode materials is vital in developing future lithium-ion battery technologies. While silicon-based anodes offer high theoretical capacity, their commercial realization is hindered by instability associated with large volume changes. Amorphous silicon nitride (a-Si3N4) has emerged as a promising alternative, acting as a conversion-type anode where lithium incorporation drives the formation of a structurally robust matrix and active phases. Here, we demonstrate that charge trapping, driven by polaron and bipolaron formation, governs the structural transformation of a-Si3N4 during initial lithiation. These charge-induced modifications lead to the formation of a Li – Si – N matrix that stabilizes the anode framework. Matrix generation is accompanied by the development of Si-rich regions, serving as precursors for the active phase. We identify a progression from electronically active polarons to inactive bipolaron states, establishing a direct link between charge localization and matrix formation. These insights recast charge trapping from a passive consequence to a functional design parameter for optimizing conversion-type anodes.
- This article is part of the themed collection: Journal of Materials Chemistry A HOT Papers