Issue 8, 2025

Design, development and performance of a Fe–Mn–Si–Cu alloy for bioabsorbable medical implants

Abstract

Bioabsorbable metallic alloys constitute a very challenging and innovative field, mainly aimed to develop the next generation of temporary medical implants. Degradation data, biological in vitro and in vivo tests are of major importance in particular for complex alloys, in which the individual element additions could enhance material performance and add functionalities. In this study, a novel Fe–Mn–Si–Cu alloy was carefully designed for vascular and blood-contact applications, and its microstructure, mechanical behavior, degradation behavior and biological performances were investigated accordingly. In previous studies, Mn and Si were found to be suitable elements to effectively enhance mechanical properties and accelerate corrosion rate in simulated body fluid. Cu was added for further grain refinement by the formation of small Cu-rich particles, potentially impacting mechanical properties and degradation behavior. In addition, the feasibility of inducing antibacterial effects in a Fe–Mn–Si–Cu alloy with low Cu content was investigated. The alloy was prepared firstly on a small scale by vacuum arc remelting, then on a larger scale by vacuum induction melting and converted into sheets by conventional thermomechanical processing techniques. Heat treatments were explored to find optimal microstructure conditions. The results confirm promising mechanical, degradation and biological performance in testing the material in in vitro conditions, showing that the degradation products are neither systematically cytotoxic nor have any hemotoxic effects. On the other hand, the expected antibacterial effects could not be confirmed.

Graphical abstract: Design, development and performance of a Fe–Mn–Si–Cu alloy for bioabsorbable medical implants

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
25 Jul 2024
Accepted
18 Dec 2024
First published
24 Jan 2025
This article is Open Access
Creative Commons BY-NC license

J. Mater. Chem. B, 2025,13, 2737-2752

Design, development and performance of a Fe–Mn–Si–Cu alloy for bioabsorbable medical implants

J. N. Lemke, J. Fiocchi, C. A. Biffi, A. Tuissi, F. Copes, C. Paternoster, D. Mantovani and A. Coda, J. Mater. Chem. B, 2025, 13, 2737 DOI: 10.1039/D4TB01635A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements