Development of 3D-printed conducting microneedle-based electrochemical point-of-care device for transdermal sensing of chlorpromazine†
Abstract
Despite the various benefits of chlorpromazine, its misuse and overdose may lead to severe side effects, therefore, creating a user-friendly point-of-care device for monitoring the levels of chlorpromazine drug to manage the potential side effects and ensure the effective and safe use of the medication is highly desired. In this report, we have demonstrated a simple and scalable manufacturing process for the development of a 3D-printed conducting microneedle array-based electrochemical point-of-care device for the minimally invasive sensing of chlorpromazine. We used an inkjet printer to print the carbon and silver ink onto a customized 3D-printed ultrasharp microneedle array for the preparation of counter, working, and reference electrodes. After physical characterization and electrochemical parameter optimization, the developed microneedle array-based three-electrode system was explored for the detection of chlorpromazine. The analytical results showed high sensitivity and selectivity toward chlorpromazine with a good linearity range from 5–120 μM and a low detection limit (0.09 μM). The proof-of-concept study results obtained from the skin-mimicking model indicated that the developed conductive microneedle array-based sensor can easily monitor the micromolar levels of chlorpromazine in artificial interstitial fluid; this type of system can be further explored for the development of other minimally invasive electrochemical biosensors.