Issue 7, 2025

Exploring the multifaceted roles of metal–organic frameworks in ecosystem regulation

Abstract

Achieving microecological balance is a complex environmental challenge. This is because the equilibrium of microecological systems necessitates both the eradication of harmful microorganisms and preservation of the beneficial ones. Conventional materials predominantly target the elimination of pathogenic microorganisms and often neglect the protection of advantageous microbial species. Metal–organic frameworks (MOFs) with excellent physicochemical properties (such as crystalline particles of various dimensions with highly porous network topology, variable local networking structures, diverse compositions with functional groups, high specific surface areas and pore volumes for surface and porous guest molecular adsorption/adhesion/affinity/binding and separation) have been extensively studied as a type of bactericidal material. However, only recently, studies on using MOFs to protect microorganisms have been reported. This review provides a comprehensive analysis of the mechanisms and applications of various MOFs (such as ZIF-8, ZIF-90, HKUST-1, MOF-5, and MIL-101) in both microbial eradication and protection. Insights into previous studies on MOF development, the material-bacteria interaction mechanisms, and potential clinical and environmental applications are also elucidated. MOFs with different framework structures/topologies (zeolite, sodalite, scaffolding, diamond, one-dimensional, and spherical/cylindrical cavities/pore networks), particle dimensions, polyhedral, cubic, rod and open/uncoordinated metal centers or fully coordinated metal centers, and ligand functional groups are discussed to understand the varying degrees of activation and interaction of microorganisms. This review holds potential in guiding future research on the design, synthesis, utilization, and integration of MOFs for the targeted eradication and protection of microorganisms and generating novel MOFs with selective antimicrobial and protective properties. Moreover, this review delivers a timely update and outlines future prospects for MOFs and their interaction with microorganisms, emphasizing their potential as a promising candidate among the next generation of smart materials in the field of ecosystem regulation.

Graphical abstract: Exploring the multifaceted roles of metal–organic frameworks in ecosystem regulation

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Review Article
Submitted
20 Aug 2024
Accepted
03 Jan 2025
First published
20 Jan 2025

J. Mater. Chem. B, 2025,13, 2272-2294

Exploring the multifaceted roles of metal–organic frameworks in ecosystem regulation

W. Li, J. Chen, J. Guo, K. T. Chan, Y. Liang, M. Chen, J. Wang, S. Gadipelli, X. Zhou and L. Cheng, J. Mater. Chem. B, 2025, 13, 2272 DOI: 10.1039/D4TB01882F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements