Issue 6, 2025

Thermosensitive liposome-encapsulated gold nanocages for photothermal-modulated drug release and synergistic photothermal therapy

Abstract

Delivery nanosystems have been widely developed to improve the efficacy of chemotherapy. However, their performance regarding the non-specific leakage of drugs remained unsatisfactory. Herein, gold nanocages (AuNCs) were used as carriers and thermo-sensitive liposome (TSL) as a protective shell to design a camptothecin (CPT)-loaded delivery nanosystem (AuNCs/CPT@TSL) for photothermal-modulated drug release. This approach effectively avoided the non-specific leakage of CPT and enabled the combination of photothermal therapy (PTT) and chemotherapy. In the simulated tumor microenvironment (pH = 5.5), the TSL shell prevented CPT leakage at 37 °C, with a release rate of only 11.4%. However, the release rate of CPT greatly increased to 85.4% when the temperature was elevated to 45 °C. The photothermal conversion efficiency of AuNCs/CPT@TSL reached up to 46.1%. At an incubation temperature of 37 °C, the cell survival rate decreased to 43.6% in AuNCs/CPT but remained above 90% in AuNCs/CPT@TSL, demonstrating the protective effect of the TSL shell. Under the combination of PTT and chemotherapy, cell viability drastically decreased to 10.9%, and the tumors completely disappeared, confirming the safe and reliable antitumor effect of AuNCs/CPT@TSL.

Graphical abstract: Thermosensitive liposome-encapsulated gold nanocages for photothermal-modulated drug release and synergistic photothermal therapy

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
12 Sep 2024
Accepted
21 Dec 2024
First published
23 Dec 2024

J. Mater. Chem. B, 2025,13, 2042-2051

Thermosensitive liposome-encapsulated gold nanocages for photothermal-modulated drug release and synergistic photothermal therapy

R. Hao, M. Jiao, X. Xu, D. Wu, H. Wei and L. Zeng, J. Mater. Chem. B, 2025, 13, 2042 DOI: 10.1039/D4TB02056A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements