Responsive hydrogel modulator with self-regulated polyphenol release for accelerating diabetic wound healing via precise immunoregulation

Abstract

Nonhealing chronic wounds are intractable clinical complications of diabetes and are characterized by high protease activity, severe oxidative stress and sustained inflammatory response. In this case, the development of functional hydrogel dressings to modulate the immune microenvironment is a well-known strategy, where the precise stimuli-responsive and spatiotemporally controlled release of bioactive molecules remains a huge challenge. Herein, we developed responsive hydrogels with self-regulated bioactive molecule release based on the protease activity in diabetic wound sites, to serve as a smart immune microenvironment modulator for accelerating wound healing. The hydrogels were fabricated by grafting oxidized hyaluronic acid with epigallocatechin-3-gallate (EGCG) and gelatin methacryloyl (GelMA) under UV irradiation. Resveratrol nanoparticles were further loaded into the hydrogels before gelation to construct a polyphenol delivery system. The prepared hydrogels could achieve the on-demand release of polyphenol upon degradation by protease, as confirmed via degradation and polyphenol release experiments. The released polyphenol was demonstrated to have the capacity to effectively scavenge excessive free radicals, promote macrophage polarization, reduce proinflammatory factor (TNF-α) expression and augment anti-inflammatory factor (IL-10) expression in vitro. Additionally, in vivo rat wound healing model experiment results confirmed that these hydrogels promoted collagen deposition and granulation tissue regeneration, accelerating diabetic wound healing. Based on the protease-responsive degradation characteristic of the hydrogels and high protease activity in the diabetic wound microenvironment, hydrogels with exquisite polyphenol release controllability are promising candidates as dressings for diabetic wound management.

Graphical abstract: Responsive hydrogel modulator with self-regulated polyphenol release for accelerating diabetic wound healing via precise immunoregulation

Supplementary files

Article information

Article type
Paper
Submitted
08 Nov 2024
Accepted
10 Feb 2025
First published
24 Feb 2025

J. Mater. Chem. B, 2025, Advance Article

Responsive hydrogel modulator with self-regulated polyphenol release for accelerating diabetic wound healing via precise immunoregulation

Y. Tan, L. Ma, Y. Wu, Z. Yi, X. Ma, J. Liu, Y. Cao and X. Li, J. Mater. Chem. B, 2025, Advance Article , DOI: 10.1039/D4TB02504K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements