Optimizing Processes and Unveiling the Therapeutic Potential of Electrospun Gelatin Nanofibers for Biomedical Applications
Abstract
Gelatin, derived primarily from animal sources such as bovine, porcine, and fish skin and bones, exhibits remarkable properties that make it an ideal candidate for various contemporary applications. Its unique attributes include excellent biocompatibility, non-toxicity, biodegradability, low immunogenicity, ease of chemical modification, and structural similarity to the extracellular matrix (ECM). These features have led to the development of gelatin-based biomaterials with tunable properties and specialized functionalities. Electrospinning remains the most widely adopted and effective technique for fabricating gelatin nanofibers. These nanofibers are gaining significant attention in the biomedical sector due to their adjustable fiber morphology, enhanced surface properties, controllable porosity, mechanical adaptability, high surface area, multi-scale pore size distribution, and intrinsic bioactive characteristics. Functionalized gelatin-based electrospun nanofibers are a rapidly advancing area in the life sciences, enabling the creation of innovative drug delivery platforms and next-generation scaffolds for tissue regeneration. Their applications span across various domains, including bone and cartilage repair, retinal and vascular engineering, myocardial regeneration, cancer therapy, chronic wound management, and biosensor development. In this article, we provide a comprehensive assessment of the progression of gelatin-based nanofibers, highlight the critical parameters governing the electrospinning of gelatin, and explore recent innovations in diverse biomedical fields, emphasizing significant advancements and research findings.
- This article is part of the themed collection: Journal of Materials Chemistry B Recent Review Articles