Injectable biodegradable polysaccharide-based hydrogels for stem cell delivery and cartilage regeneration

Abstract

Current knee osteoarthritis (KOA) treatments mainly provide symptom relief rather than cartilage repair. While regenerative medicine using stem cell therapy holds promise for tissue regeneration and joint function restoration, a significant challenge lies in the efficient and minimally invasive delivery of stem cells to target sites and ensuring high regenerative efficacy. This challenge stems from issues such as cell leakage and reduced cellular activity post-transplantation. In this study, we report the development of an injectable polysaccharide hydrogel (termed Ald-HA/Suc-CS), which is compatible with cells and tissues, and will be suitable to support the proliferation of human adipose-derived stem cells (hADSCs) for cartilage regeneration. The hydrogel is formed on-site at the defect site of articular cartilage by mixing two injectable polymer solutions at physiological temperature post-injection. During the gelation process, hADSCs contained in one of the polymer solutions are encapsulated in the hydrogel. The hydrogel is tailored to create a desired microenvironment with mechanical properties, pore size, and degradation rate suitable for supporting hADSC viability and function. We demonstrated that nearly all of the encapsulated hADSCs remained viable 14 days post-injection and exhibited increased expression of chondrogenic differentiation genes compared to those cultured on 2D surfaces. This hydrogel holds great promise to improve the efficacy of KOA treatment and is potentially applicable to other cell-based therapies.

Graphical abstract: Injectable biodegradable polysaccharide-based hydrogels for stem cell delivery and cartilage regeneration

Supplementary files

Article information

Article type
Paper
Submitted
08 Feb 2025
Accepted
31 May 2025
First published
02 Jun 2025
This article is Open Access
Creative Commons BY-NC license

J. Mater. Chem. B, 2025, Advance Article

Injectable biodegradable polysaccharide-based hydrogels for stem cell delivery and cartilage regeneration

X. Lin, R. Liu, Y. Zhou, J. Beitzel, A. Noguchi, M. Kyomoto and M. Zhang, J. Mater. Chem. B, 2025, Advance Article , DOI: 10.1039/D5TB00287G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements