Enhancing the crystallinity and dielectric performance of ALD-grown SrTiO3 films by introducing a sub-nm-thick Pt layer

Abstract

SrTiO3 (STO), which has an exceptionally high dielectric constant, is a promising candidate for capacitor dielectrics for dynamic random-access memory (DRAM) applications. However, during atomic layer deposition (ALD), unwanted interfacial reactions with substrates, such as Ru, hinder its integration, which results in compositional nonuniformity and poor crystallinity. In this study, an ultrathin Pt layer (≤ 1 nm) is introduced as a reaction barrier, which effectively suppresses these interfacial reactions. This approach enabled the growth of high-quality stoichiometric STO films with enhanced crystallinity and dielectric performance. Despite its sub-nanometer thickness, the Pt layer notably improved the compositional uniformity and promoted film crystallization, which significantly increased the dielectric constants and reduced the equivalent oxide thickness (EOT). Post-deposition annealing (PDA) at 500 °C, compatible with DRAM fabrication, yielded an EOT of 0.34 nm with stable leakage currents and long-term reliability for STO films thinner than 10 nm. Furthermore, the area-selective growth characteristic of the ultrathin Pt layer eliminated the critical etching challenges of Pt, which facilitated selective growth on Ru and avoided unwanted growth on dielectric materials such as SiO2. This study presents a scalable, low-temperature solution for integrating STO into DRAM capacitors, thereby addressing critical fabrication challenges and advancing the potential of STO in memory applications.

Supplementary files

Article information

Article type
Paper
Submitted
20 Dec 2024
Accepted
19 Feb 2025
First published
20 Feb 2025
This article is Open Access
Creative Commons BY-NC license

J. Mater. Chem. C, 2025, Accepted Manuscript

Enhancing the crystallinity and dielectric performance of ALD-grown SrTiO3 films by introducing a sub-nm-thick Pt layer

H. K. Chung, J. Jeon, S. Ye, S. Kim, S. O. Won, T. J. Park and S. K. Kim, J. Mater. Chem. C, 2025, Accepted Manuscript , DOI: 10.1039/D4TC05377J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements