Issue 5, 2010

Poly(3-dodedyl-2,5-thienylenevinylene)s from the Stille coupling and the Horner–Emmons reaction

Abstract

Regioregular (RR) conjugated polymers are critical for electronic and optoelectronic properties of polymer based semiconducting devices. Monosubstituted polythienylvinylene (PTV), a relatively low band-gap conjugated polymer, has been reportedly synthesized using the Stille coupling reaction between 3-dodecyl-2,5-dibromothiophene and (E)-1,2-bis(tributylstannyl)ethylene. Although a small fraction of the product shows good (∼90%) regioregularity, the whole product (S-C12-PTV) consists of mostly unidentified structures. To gain better control of the polymer structure and regioregularity, a difunctionalized C12-thiophene monomer, 3-dodecyl-5-formyl-thiophen-2-ylmethyl)-phosphonic acid diethyl ester, has been polymerized in near quantitative yield via the Horner–Emmons reaction. The full (100%) regioregularity of the resulting polymer (HE-C12-PTV) has been confirmed by its 1H and 13C NMR spectra. The full regioregularity is also reflected in its strong tendency to crystallize and practically no solubility in boiling hexane, in sharp contrast to S-C12-PTV. UV-vis absorption spectroscopy, fluorescence spectroscopy, cyclovoltammetry, thermal analysis (DSC & TGA) and X-ray diffraction have been used to characterize both polymers. UV-vis absorption spectra of the HE-C12-PTV chloroform solutions of different concentrations show well-resolved vibronic structures with an absorption maximum at 577 nm and a prominent shoulder at 614 nm. The optical bandgaps are 1.80 eV in chloroform solution and 1.65 eV in film. The HOMO/LUMO energy levels of the HE-C12-PTV film were found to be at −4.98 eV and −2.88 eV, respectively. The electrochemical bandgap of the polymer in the film is estimated to be 2.1 eV. The DSC curve shows a pronounced melting peak at 205 °C. XRD study shows that a decent crystalline structure is formed without any annealing of the as-cast films.

Graphical abstract: Poly(3-dodedyl-2,5-thienylenevinylene)s from the Stille coupling and the Horner–Emmons reaction

Article information

Article type
Paper
Submitted
29 Oct 2009
Accepted
08 Dec 2009
First published
11 Feb 2010

Polym. Chem., 2010,1, 663-669

Poly(3-dodedyl-2,5-thienylenevinylene)s from the Stille coupling and the Horner–Emmons reaction

C. Zhang, T. Matos, R. Li, S. Sun, J. E. Lewis, J. Zhang and X. Jiang, Polym. Chem., 2010, 1, 663 DOI: 10.1039/B9PY00324J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements