Issue 1, 2012

A novel enzymatic technique for determination of sarcosine in urine samples

Abstract

Metabolites impart a significant importance to the understanding of biological reactions and consequently to the development of diagnostic and therapeutic techniques for specific diseases. Furthermore, there has been recent interest in metabolite concentrations present in urine for potential noninvasive disease diagnosis. The detection of specific metabolites, however, presents certain analytical difficulties such as low or ambiguous specificity of the techniques. This study developed a new technique, utilizing oxidative, enzymatic production of formaldehyde from the metabolite to produce a pH-induced change observed by fluorescein in acetone. This probe displays high sensitivity towards pH imbalances and, coupled with high enzymatic specificity, forms an accurate method to measure metabolite concentrations. Sarcosine was used as a model analyte in this study due to its potential for serving as a prostate cancer biomarker. Sarcosine was treated with sarcosine oxidase to generate formaldehyde, which was further oxidized to formic acid, and subsequently measured by the corresponding change in fluorescein. A good linearity was revealed with a correlation coefficient of 0.9961 and a detection limit of 20 nmol Lāˆ’1. This method was applied to sarcosine analysis in nine urine samples. The results suggest that this is a viable, cost-effective technique for determination of sarcosine in urine samples without interferences such as alanine.

Graphical abstract: A novel enzymatic technique for determination of sarcosine in urine samples

Article information

Article type
Paper
Submitted
28 Aug 2011
Accepted
14 Nov 2011
First published
05 Dec 2011

Anal. Methods, 2012,4, 141-146

A novel enzymatic technique for determination of sarcosine in urine samples

C. Burton, S. Gamagedara and Y. Ma, Anal. Methods, 2012, 4, 141 DOI: 10.1039/C1AY05541K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements