Issue 8, 2012

Thermopower enhancement in conducting polymer nanocomposites via carrier energy scattering at the organic–inorganic semiconductor interface

Abstract

The energy-filtering effect was successfully employed at the organic–inorganic semiconductor interface of poly(3-hexylthiophene) (P3HT) nanocomposites with the addition of Bi2Te3 nanowires, where low-energy carriers were strongly scattered by the appropriately engineered potential barrier of the P3HT–Bi2Te3 interface. The resulting P3HT–Bi2Te3 nanocomposites exhibited a high power factor of 13.6 μW K−2 m−1 compared to that of 3.9 μW K−2 m−1 in P3HT. The transport characteristics of nanocomposites, including the carrier concentration, mobility, and energy-dependent scattering parameter, were revealed by the experimental measurements of electrical conductivity, Seebeck coefficient, and Hall coefficient to quantitatively elucidate the carrier energy scattering at the P3HT–Bi2Te3 interface. The ability to rationally engineer the organic–inorganic semiconductor interfaces of polymer nanocomposites to achieve an improved Seebeck coefficient and power factor provides a potential route to high-performance, large-area, and flexible polymer thermoelectric materials.

Graphical abstract: Thermopower enhancement in conducting polymer nanocomposites via carrier energy scattering at the organic–inorganic semiconductor interface

Supplementary files

Article information

Article type
Paper
Submitted
30 Mar 2012
Accepted
14 Jun 2012
First published
14 Jun 2012

Energy Environ. Sci., 2012,5, 8351-8358

Thermopower enhancement in conducting polymer nanocomposites via carrier energy scattering at the organic–inorganic semiconductor interface

M. He, J. Ge, Z. Lin, X. Feng, X. Wang, H. Lu, Y. Yang and F. Qiu, Energy Environ. Sci., 2012, 5, 8351 DOI: 10.1039/C2EE21803H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements