Issue 5, 2012

Experiment and mathematical modeling of gene expression dynamics in a cell-free system

Abstract

Cell-free in vitro expression is increasingly important for high-throughput expression screening, high yield protein production and synthetic biology applications. Yet its potential for quantitative investigation of gene expression and regulatory circuits is limited by the availability of data on composition, kinetic rate constants and standardized computational tools for modeling. Here we report on calibration measurements and mathematical modeling of a reconstituted in vitro expression system. We measured a series of GFP expression and mRNA transcription time courses under various initial conditions and established the translation step as the bottle neck of in vitro protein synthesis. Cell-free translation was observed to expire after 3 h independent of initial template DNA concentration. We developed a minimalistic rate equation model and optimized its parameters by performing a concurrent fit to measured time courses. The model predicts the dependence of protein yield not only on template DNA concentration, but also on experimental timing and hence is a valuable tool to optimize yield strategies.

Graphical abstract: Experiment and mathematical modeling of gene expression dynamics in a cell-free system

Article information

Article type
Paper
Submitted
08 Sep 2011
Accepted
14 Mar 2012
First published
05 Apr 2012

Integr. Biol., 2012,4, 494-501

Spotlight

Advertisements