Abstract
This work reports on a passive double spiral microfluidic device allowing rapid and label-free tumor cell separation and enrichment from diluted peripheral whole blood, by exploiting the size-dependent hydrodynamic forces. A numerical model is developed to simulate the Dean flow inside the curved geometry and to track the particle/cell trajectories, which is validated against the experimental observations and serves as a theoretical foundation for optimizing the operating conditions. Results from separating tumor cells (MCF-7 and Hela) spiked into whole blood indicate that 92.28% of blood cells and 96.77% of tumor cells are collected at the inner and the middle outlet, respectively, with 88.5% tumor recovery rate at a throughput of 3.33 × 107 cells min−1. We expect that this label-free microfluidic platform, driven by purely hydrodynamic forces, would have an impact on fundamental and clinical studies of circulating tumor cells.
- This article is part of the themed collection: 2012 Lab on a Chip Emerging Investigators